
Working With Compression

Fabian ’ryg’ Giesen

farbrausch

Breakpoint 06

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 1 / 50

Outline (part 1)

1 Introduction
Motivation and Overview
Prerequisites

2 Elementary Techniques
Run Length Encoding (RLE)
Delta Coding
Quantization
Reordering
Example: V2 modules

3 Coding
Codes
Huffman coding
Arithmetic coding

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 2 / 50

Outline

1 Introduction
Motivation and Overview
Prerequisites

2 Elementary Techniques
Run Length Encoding (RLE)
Delta Coding
Quantization
Reordering
Example: V2 modules

3 Coding
Codes
Huffman coding
Arithmetic coding

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 3 / 50

Motivation and Overview (1)

4k and 64k intros stopped being purely about code years ago.
I Less one-effect intros.
I Far more “complex” data in intros.

People expect more and more from intros nowadays.
I Fancy materials and shading
I Complex meshes
I Good textures
I and so on...

That takes a lot of time to produce.
I Intros are now ≥ 4 months in development.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 4 / 50

Motivation and Overview (2)

It also takes a lot of space.

Luckily, packers have gotten much better lately.
I Crinkler: Spectacular compression, no .BAT droppers!
I kkrunchy: Current version packs fr-08 into 50.5 KB.

It’s not that easy, though...
I To get good compression, data must be stored in a suitable format.
I ...a somewhat “black art”.

To get good compression ratios, you need to know how compression
works.

I Not in a detailed fashion, just the basics.
I What’s the general idea behind what my packer does?
I Which types of redundancy are exploited?

I’ll answer these questions in this seminar.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 5 / 50

Prerequisites

You’ll need...

Some programming experience.

Familiarity with mathematical notation can’t hurt.
I Don’t worry, no fancy maths in here!
I I’ll talk you through everything anyway.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 6 / 50

Outline

1 Introduction
Motivation and Overview
Prerequisites

2 Elementary Techniques
Run Length Encoding (RLE)
Delta Coding
Quantization
Reordering
Example: V2 modules

3 Coding
Codes
Huffman coding
Arithmetic coding

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 7 / 50

Run Length Encoding (1)

Most of you probably know this already.

Idea: Replace runs of identical symbols by a symbol/run length pair.

aaaaabccc a5b1c3

Simple and fast, but lousy compression for most types of data.

Often used as pre- or postprocessing step (details later!).

Also often used to encode runs of one special symbol (usually 0).
I When this symbol occurs very often...
I ...and other symbols don’t (at least not in runs).

The basic encoding mentioned above sucks in most cases.

Better encodings:

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 8 / 50

Run Length Encoding (2)

Packet based: When a lot of symbols occur only once.
I Storing run lengths for every symbol is a waste of space.
I Instead, group into variable-sized packets.

F Each packet has a size, n.
F Copy packets just contain n raw symbols.
F Run packets repeat a symbol n times.

I This is used in some graphics formats (e.g. TGA).

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 9 / 50

Run Length Encoding (3)

Escape codes: Use a special code to tag runs.
I Assuming you have an unused code, this is a no-brainer.
I No expansion on uncompressible data.
I Reduces compression gains because escape codes take space.

I mention those schemes because variants of both will become important
later on with more involved compression techniques.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 10 / 50

Delta Coding

Another very well-known scheme.

Not an actual compression algorithm, but a transform.

Idea: Don’t code the symbols themselves, but differences between
adjacent symbols.

1,1,1,2,3,4,5,2 1,0,0,1,1,1,1,-3

Good for smooth data that varies slowly: differences are smaller than
the actual values and tend to cluster around zero.

We’ll soon see how to take advantage of the latter.

Again, very simple and fast.

And again, not of much use for general data.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 11 / 50

Quantization (1)

In this context: using less bits to represent values.

The main lossy step in all lossy compression algorithms.

Scalar quantization: Using less bits for individual numbers.
I Uniform: Value range gets divided into uniform-sized bins.

F 8 bit vs. 16 bit sampled sound
F 15 bit High Color vs. 24 bit True Color
F and so on...

I Nonuniform: “Important” ranges get smaller bins.
F Floating-point values (more precision near zero).
F and other examples you probably don’t know...

Vector quantization: Code several values at once.
I A “Codebook” maps codes to encoded values.
I Codebook needs to be stored (typically quite small).
I Paletted images: 256 colors out of 224 (RGB triples).
I Some (old) video codecs: code 4× 4 blocks of pixels.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 12 / 50

Quantization (2)

Scalar quantization is usually fine for intros.

No clever tricks, keep everything simple and byte aligned.
I Simple code ⇒ no subtile, hard to find bugs!
I Also better for compression, we’ll get there soon.

Example: Throw away least significant byte of 32bit floats.
I Reduces mantissa size from 23 to 15 bits: enough for most data!
I Or just use Cg/HLSL-style “half” (16bit floats).

Another example: Camera (or other) splines.
I Rescale time to [0, 1], store “real” length seperately.
I Then store time for spline keys with 12 or even just 8 bits.

Rounding correctly during quantization is important.
I Can cut quantization error to half!
I Compare face in Candytron Party to Final...

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 13 / 50

Reordering

Probably the simplest technique of them all.

Interestingly, also often the most important one.

Example: kkrunchy x86 opcode reordering
I After packing with the kkrunchy compression engine...
I kkrieger code w/out reorder: 77908 bytes
I kkrieger code with reorder: 65772 bytes
I Near 12k difference by reordering (mostly)!
I I’ll explain how it works in part 2.

Main idea: Group data by context.
I Values that mean similar things or affect the same parameters should

be stored together.
I So the packer can exploit underlying structure better!
I Also increases efficiency of delta coding and other simple schemes.
I ⇒ Even more compression at very low cost!

Not clear yet? Don’t worry, there’ll be lots of examples.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 14 / 50

Example: V2 modules

For those who don’t know, V2 is our realtime softsynth.

Music made with V2 gets stored as V2 Modules (V2M).

V2 Modules consist of two main parts:
I Patches, basically instrument definitions.
I And the music, which is a reordered and simplified MIDI stream.

The patches are stored basically unprocessed.

The music data is a lot more interesting.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 15 / 50

V2 music data

Stored as events.

Every event corresponds to a state change in the player.
I Note on/off, Volume change, Program (Instrument) change, etc.

Events come in two flavors:
I Channel events affect only one MIDI channel.
I Global events are mainly for effects and work on all channels at once.

Every event has a timestamp and type-dependent additional data.

Channel events are grouped by type, each group is stored seperately:
I Notes (both actual notes and “note off” commands)
I Program (Instrument) changes
I “Pitch Bend” (can be used to change sounds in various ways)
I Controller changes (velocity, modulation, etc.)

F Again grouped by controller type.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 16 / 50

V2 music data (2)

Note we’ve already done some reordering:
I Seperation in global/channel events
I Further grouping for channel events

So, how much does that save us?

fr-08 main tune (MIDI): 20898 bytes.
I ...after packing with the kkrunchy compression engine.
I I’ll always use packed sizes from now on.

fr-08 main tune (proto-V2M): 81778 bytes.
I Oops.
I Well, so far, it’s all very explicit.
I There’s lots of stuff we can do from here on.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 17 / 50

Getting it small

To be sure, that’s unrealistically bad.

First target: Timestamps.
I That’s a 24bit number per event.
I Which just gets bigger and bigger over time.
I ⇒ Delta-code it!

With time deltas: 11017 bytes.
I Much better :)

Most of the command parameters change smoothly.
I So delta-code them too.

Delta everything: 4672 bytes.
I Pretty impressive for a few subtractions, huh?

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 18 / 50

Going on

Let’s see what we can do to improve this even further.

We now went on to reorder the event bytes aswell.
Right now, we store complete events:

I Time delta (3 bytes)
I Parameter 1 delta (1 byte)
I Parameter 2 delta (1 byte)

Change that to:
I Time delta LSB (byte) for Event 1
I Time delta LSB for Event 2

I
...

I Time delta LSB for Event n
I Time delta next byte for Event 1

I
...

I Paramater 2 delta for Event n
Idea:

I Time and parameter deltas aren’t related, so seperate them.
I Usually, the higher time delta bytes are 0, so we get long runs.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 19 / 50

Results

With reordering: 4995 bytes.
I vs. 4672 bytes without.
I Again, oops.

...and that’s why you should always test transforms seperately.
I We added deltas+reordering at the same time, so we never noticed.
I Until about a week ago, that is :)

Still, it shows how useful such simple transforms are.

Actually, none of the transforms I can recommend are complex.
I The biggest difference is transforms vs. no transforms.
I Fine-tuning can give you another 10%
I ...at the expense of more code.
I Seldomly worth it!

Anyway, on toward more compression basics...
I So we can develop a feel for what’s worth testing.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 20 / 50

Outline

1 Introduction
Motivation and Overview
Prerequisites

2 Elementary Techniques
Run Length Encoding (RLE)
Delta Coding
Quantization
Reordering
Example: V2 modules

3 Coding
Codes
Huffman coding
Arithmetic coding

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 21 / 50

Codes (1)

Actually binary codes.

A binary code is basically a table that maps symbols to bit strings.
I Or a function C : Σ → {0, 1}+ if you prefer it formal.

Example binary code

a 7→ 0
b 7→ 10
c 7→ 11

You code strings of symbols by concatenating the codes of individual
symbols (In the example: aabc → 001011).

A code is uniquely decodable if there’s a unambiguous backward
mapping from there.

I Everything else is useless for compression.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 22 / 50

Codes (2)

A prefix code is a code you can decode from left to right without
lookahead.

I Not a formal definition, but good enough for us.
I The example code on the last slide was a prefix code.
I For all uniquely decodable codes, there are prefix codes of equal length.
I So we just use prefix codes, since they’re easy to decode.

So how do we get good codes?
I There are rule-based codes:
I Unary code: 1 7→ 0, 2 7→ 10, 3 7→ 110, . . .
I Other codes: Golomb code, γ-code, . . .
I All good for certain value distributions.

Or generate them from your data...

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 23 / 50

Huffman coding

One of the “classic” algorithms in CS.

Usually taught in introductory CS classes.

Input: Occurence counts (=frequencies) of symbols.

Output: Optimal binary code for that distribution.
I No binary code can do better.

Won’t describe the algorithm, look it up when interested.

More important for us: type of redundancy exploited.
I More frequent symbols get shorter codes.
I Remember Delta coding? “Values cluster around zero”.
I Huffman codes are great for that.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 24 / 50

Arithmetic coding (1)

Improvement compared to Huffman codes.

“Didn’t you say Huffman codes are optimal?”

Partially true: They’re optimal binary codes.

But we can do better than binary codes.

Key problem: binary codes always allocate whole bits.

How can one use partial bits?

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 25 / 50

Arithmetic coding (2)

Say you have a string of three symbols a,b,c.
All three are equally likely.

Huffman code: a 7→ 0, b 7→ 10, c 7→ 11.
I Or some permutation of that.

String is 3n characters long.
I n × ’a’, n × ’b’, n × ’c’.

Coded string is n︸︷︷︸
n×’a’

+ 2n︸︷︷︸
n×’b’

+ 2n︸︷︷︸
n×’c’

= 5n bits long.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 26 / 50

Arithmetic coding (3)

Now let’s try something different:

First, assign (decimal) numbers to our characters.
I a 7→ 0, b 7→ 1, c 7→ 2.

Then, we can stuff 5 characters into each byte:
I Character values are c1 to c5.
I Byte value is c1 + 3c2 + 32c3 + 33c4 + 34c5.
I Uses 243 out of 256 characters — good enough.
I Decoding is several divisions (or just a table lookup).

5 characters per 8 bits ⇒ 8/5 = 1.6 bits/character.

So 1.6 · 3n︸︷︷︸
String length

= 4.8n bits for the whole string.

That’s how you get fractional bits.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 27 / 50

Arithmetic coding (4)

To summarize: Idea is to treat our bytestream as a number.

No fixed code assignments, just arithmetic on that number.
I Different arithmetic coding algorithms are about doing this efficiently.
I Most are still quite slow compared to binary codes.

You’re not working with code strings, but probabilities.

Unlike Huffman, it’s no big deal to change probability distribution.
I “Adaptive Arihmetic Coding”.
I How accurate that distribution is determines compression ratio.

Can also use different models based on context.
I We’ll explore that idea further in part 2.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 28 / 50

End of part 1

Questions so far?

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 29 / 50

Outline (part 2)

4 Dictionary Schemes and Context Models
Dictionary methods
LZ77 and variants
Context modeling

5 Reordering case studies
Operator systems
x86 Opcode reordering

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 30 / 50

Outline

4 Dictionary Schemes and Context Models
Dictionary methods
LZ77 and variants
Context modeling

5 Reordering case studies
Operator systems
x86 Opcode reordering

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 31 / 50

Dictionary methods (1)

In most types of data, there are many repetitions.
I Lots of small 2- or 3-byte-matches.
I A few really long ones.

So how can we make use of that?

Idea: Code strings with a dictionary.
I Not the bulky hardcover kind :)
I Built from data preceding current byte.

If current input matches with dictionary...
I We store a reference to the dictionary.
I Usually smaller than the string itself.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 32 / 50

Dictionary methods (2)

Dictionary can be explicit or implicit.
I Explicit: Algorithm maintains a list of strings.
I Implicit: Well, anything not explicit :)

Dictionary is not stored along with data!
I Instead, it’s being built on the fly from (de)coded data.

Explicit dictionary methods are quite dead.
I Implicit is easier to combine with other algorithms.
I All good compression methods combine several techniques.

But for completeness...
I LZW is an explicit dictionary scheme.
I Used in Unix compress, GIF format, V.34 protocol.
I Used to be patented (now expired)

F GIF trouble...

I Not popular anymore.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 33 / 50

LZ77 and variants (1)

Abraham Lempel and Jakob Ziv, 1977.

Basis for...
I APack (DOS 4k Packer), NRV (used in UPX).
I with Huffman coding: LHA, ARJ, ZIP, RAR, CAB.
I with Arithmetic coding: LZMA (7-Zip, MEW, UPack), kkrunchy
I Lots more . . .

Everyone has used this already.

Uses a sliding window of fixed size.
I e.g. ZIP: last 32 KB seen.
I Matches for the current input string are searched in that window.
I Obviously, longer matches are better (but longest not necessarily best).
I If no match, code current input character as-is.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 34 / 50

LZ77 and variants (2)

Result is a sequence of “literal” or “match” tokens.
I Compare to packet-based RLE.

This token sequence gets coded:
I Plain LZ77 uses fixed-size codes for everything.
I LZSS: “match” bit, offset+length if match, else raw symbol.
I ZIP: Huffman coding on top.
I Newer algorithms: Even fancier coding.

Take-home lesson: you want it to find long matches.
I So make data repetetive.
I One of the reasons reordering is helpful.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 35 / 50

Context modeling

A class of modeling techniques for Arithmetic coding.

Idea: Predict next symbol based on context.
I “Context” here: last few characters seen.
I Collects statistics for different-length contexts...
I ...then builds an overall prediction from that somehow.

That somehow is the main difference between algorithms.
I Plus the details of collecting statistics.

That paradigm has produced some of the best compressors out there.
I and some of the slowest, too :)

Modeling details are rather technical...
I ...but not that important to us anyway.
I As “user”, treat it like you would LZ77+Arithmetic coding.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 36 / 50

Outline

4 Dictionary Schemes and Context Models
Dictionary methods
LZ77 and variants
Context modeling

5 Reordering case studies
Operator systems
x86 Opcode reordering

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 37 / 50

Operator graphs

You’ve seen this if you ever used a FR demotool.

Others use a similar representation internally.
I Even if the user interface is quite different.

Successive operations on data are stored with their parameters.
I Nothing special so far, other apps do this too (Undo).
I But our operation history is a tree.

F More precisely, a DAG (directed acyclic graph).

That operation history is then stored in the intro.
I So let’s make it pack well.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 38 / 50

Storing operator graphs

First, standard techniques for trees apply.
I More precisely, postorder traversal.

F Writing out operator type IDs as you go.

I As said, not technically a tree, but a DAG.
I Pretend it’s a tree, use escape codes for “exceptions”.

That’s the most efficient way to store the graph structure.
I But what about the operator parameters?

Straightforward way: Together with op type in graph.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 39 / 50

Optimizing operator storage

kkrieger beta dataset: 29852 bytes (packed).
I With the simple encoding mentioned above.

But: Ops of same type tend to have similar data.

We can exploit that:
I Store all ops of the same type together.
I We need to seperate tree and op data for that.

With those changes: 27741 bytes.
I Or about 7% gain in compression ratio.
I Changes to “loading” code in intro are trivial.
I No huge gain, but an easy saving.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 40 / 50

x86 Code

Source code is usually highly structured.

The compiled x86 Code looks quite unstructured.
I When viewed in a Hex Editor.

Possible explanations:
1 Compiling inherently destroys that structure.
2 x86 instruction encoding hides it.

Both are true in part.
I We can’t do anything about the former, so concentrate on the latter :)

There’ll be some x86 assembly code in this section.
I If you can’t read that, just ignore it.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 41 / 50

x86 Code example

e8 6a 13 02 00 call sCopyMem4
8b 4b 1c mov ecx, dword ptr [ebx+1Ch]
83 c4 0c add esp, 0Ch
8b c5 mov eax, ebp
d1 e8 shr eax, 1
8b f5 mov esi, ebp
8d 14 40 lea edx, dword ptr [eax+eax*2]
8b 44 24 1c mov eax, dword ptr [esp+1Ch]
83 e6 01 and esi, 1
8d 3c 96 lea edi, dword ptr [esi+edx*4]
39 44 b9 1c cmp dword ptr [ecx+edi*4+1ch], eax
75 77 jne short L15176
...

Opcode+ModRM — Jump Offset — Displacement — SIB — Immediate
Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 43 / 50

x86 Code observations

Not that systematic.
I Original x86 set was 16bit and had less instructions.
I Lots of extensions, hacks to for 32bit, etc.

Different types of data in one, big stream.
I Actual instruction opcodes
I Addresses
I Displacements
I Immediate operands
I etc.

Completely different distributions of values in stream!

How can we improve on that?

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 44 / 50

Making x86 code smaller

Same approch as before:
I Try to group related data.

We don’t want to store elaborate metadata for decoding!
I Overhead!
I Can’t we get away without?

Idea: Stay with x86 opcode encoding.
I Processor can decode that ⇒ we can, too.
I But: We split into several streams (again).

Needs a disassembler.
I To find out which data is which.
I And determine instruction sizes.

Sounds like total overkill.
I But a simple table-driven disassembler fits in 200 bytes.
I (Plus 256 bytes of tables)

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 45 / 50

Further processing

Another interesting point: call instructions.
I Used to jump into subroutines.

call instruction format:
I 1 byte opcode.
I 4 bytes relative target offset.

F Relative so programs can be moved in memory easier.

But: relative addressing hurts compression!
I One function may get called several times.
I Relative offsets are different each time!

So: replace it with absolute offsets.
I Improves compression by a few percent (I don’t have numbers).
I Used by UPX and other EXE packers.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 46 / 50

Compressing call offsets (1)

We take that one step further:
I A lot of functions get called several times.
I Coding the offset every time is inefficient.
I ⇒ Keep a list of recent call locations.
I If offset is in the list, code list index instead of offset.

Saves about 2% code size on average.

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 47 / 50

Compressing call offsets (2)

But we’re not through yet:
I Visual C++ pads spaces between functions with int3 (Breakpoint)

opcodes.
I To trigger a debugger should execution ever flow there...
I Not an opcode you use in normal code flow!

How is that useful?
I We add all memory locations just after a string of int3 opcode to the

call list.
I Hoping that they actually are functions.
I Worst case, that entry will be unused, so no problem there.
I But we can usually “predict” call targets very succesfully like that.

Does it really help?
I Well, another 1.5% improvement :)

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 48 / 50

Wrapping it up

I gave lots of rough introductions to compression algorithms.

Don’t trip over details, just try to get the big picture.
I What type of redundancy is it trying to exploit.
I What works well, what doesn’t.

Transforms are the key.
I Can make a huge difference.
I Don’t overdo it.
I Simple is best.

Reordering very powerful for LZ/Context-based schemes.
I Grouping data by structure.
I Optionally delta-coding etc. afterwards.
I Measure, measure, measure!

Examples are some of the things I did.
I I hope the ideas came through.
I Heavily dependent on type of data.
I Your mileage may vary :)

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 49 / 50

That’s it!

Questions?

ryg (at) theprodukkt (dot) com
http://www.farbrausch.de/˜fg

Fabian ’ryg’ Giesen (farbrausch) Working With Compression Breakpoint 06 50 / 50

http://www.farbrausch.de/~fg

	Introduction
	Motivation and Overview
	Prerequisites

	Elementary Techniques
	Run Length Encoding (RLE)
	Delta Coding
	Quantization
	Reordering
	Example: V2 modules

	Coding
	Codes
	Huffman coding
	Arithmetic coding

	Dictionary Schemes and Context Models
	Dictionary methods
	LZ77 and variants
	Context modeling

	Reordering case studies
	Operator systems
	x86 Opcode reordering

